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ABSTRACT. In this paper we study the self-intersection of paths solving elliptic stochastic differen-
tial equations driven by fractional Brownian motion. We show that a path has no self-intersection –
except for paths forming a set of zero (r, q)-capacity in the sample space – provided the dimension
d of the space and the Hurst parameter H satisfy the inequality d > rq + 2/H . This inequality is
sharp in the case of brownian motion and fractional brownian motion according to existing results.
Various results exist for the critical case where d= rq + 4 for Brownian Motion.
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1. INTRODUCTION

The presence or absence as well as the number of self-intersections are important properties
of the path of a stochastic process. These properties are studied along with differentiability vs.
non-differentiability, modulus of continuity, and others (see e.g.[21][29]). Pólya [31] studied re-
currence, the related property of whether a path returns to a point previously visited and how often,
for paths of random walks. Lévy studied the question of recurrence and showed that in dimension
2 double points exist almost surely in [18][19]. Kakutani proved in 1944 that the paths of Brow-
nian motion almost surely have no self-intersection for d ≥ 5 [15]. This corresponds to r = 0
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and H = 1/2 in the inequality d > rq + 2/H . Dvoretzky, Erdös, and Kakutani subsequently
proved that there is no self intersection for Brownian motion for d = 4, the critical dimension.
Subsequently the authors proved that there are double intersections but no triple intersections in
d = 3, whereas there are intersections of arbitrary multiplicity for d ≤ 2 [6][7][8].

Results on the capacity of the set of paths with self-intersection began with Fukushima, who
showed in [10] that the set of Brownian motion paths which intersect themselves has zero (1, 2)-
capacity for d ≥ 7. Takeda proved the result for Brownian Motion that the set of self-intersecting
paths has zero (r, q)-capacity provided d > rq + 4 [33]. Lyons proved that there is no self-
intersection except on a set of zero (1, 2)-capacity for the critical case d = 6 [26]. Khoshnevisan
reviews numerous results on the capacity of Brownian self-intersection in the 2003 paper [16],
where he also provides an elementary proof of past results and relates the self-intersection property
to methods from the theory of renormalization groups. These authors use various definitions of
capacity, resulting from the Ornstein-Uhlenbeck semi-group, the Sobolev norm for the Malliavin
derivative, and the classical potential theory. These different definitions are mutually absolutely
continuous as outer measures and comparable as norms [12][30][32].

We will use the definition of the capacity based on the Sobolev norm for the Malliavin deriviative
in this paper. In 2018 Li and Qian published a paper proving that self-intersecting paths of a
fractional Brownian motion (fBm) with Hurst parameter H form a set of zero (r, q)-capacity when
d > rq + 2/H [22], which our paper will show also applies to stochastic differential equations
driven by fBm. Li and Qian point out that the critical dimension case is currently an open problem
for fractional Brownian motion because it is not possible to apply the classical potential theory.
We follow the methods Boedihardjo et al. employed in [3] to analyze the self-intersection of the
signature of a Brownian motion.

To employ the tools of the quasi-sure anlaysis we will have to show that the map between the
sample space and solutions to the rough differential equation (RDE) is quasi-continuous. The
results of Coutin and Qian demonstrate that dyadic interpolation of paths of fractional Brownian
motion converge in p-variation except on a set of zero (r, q)-capacity zero sample space, provided
the Hurst parameter H satisfies 1/4 < H < 1 and p > 1/H [5]. These results were generalized
and elaborated upon by both Boedihardjo et al. and Lyons and Qian [2][24]. Critically the dyadic
interpolations do not converge in p-variation for any p even almost surely for H ≤ 1/4, so we will
only consider 1/4 < H < 1.

Combining this result with the universal limit theorem and a theorem of Malliavin we show that
the map between the sample space and solutions to the RDE is quasi-continuous [25][27]. This
allows us to apply the Chebyshev inequality for capacity to bound the capacity in a similar manner
to the Chebyshev inequality for probability. We combine the Chebyshev inequality and bounds on
the probability density for the path of the solution from Ouyang et al. in [20][1].

2. PRELIMINARIES

2.1. Fractional Brownian Motion as a Rough Path. Kolmogorov defined the process that Man-
delbrot and Van Ness would later call fractional Brownian motion (fBm) in a 1940 paper [17] [28].
An fBm, Bt, is a Gaussian stochastic process with mean zero and covariance

E [BtBs] = R(s, t) :=
1

2

(
s2H + t2H − |t− s|2H

)
.
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In order to analyze the fBm paths as well as solutions to rough differential equations (rde)
driven by such paths we apply Lyons’ theory of rough paths [25]. Lyons introduced this theory
in his seminal 1998 paper [23]. The context for the definition of a rough path on Rd is the tensor
algebra

T (Rd) =

∞⊕
n=0

(
Rd
)⊗n

,

where
(
Rd
)⊗0

= R. The tensor algebra is equipped with a tensor product ⊗, and a rough path is a
function Xs,t from the simplex ∆2 = {(s, t) ∈ [0, T ]2 : s < t} to T (Rd), such that

Xs,t = Xs,u ⊗Xu,t,

for s < u < t. we refer to the i-th coordinate of Xs,t as xis,t. The p-variation norm of a rough path
can be defined

||Xs,t||p = max
1≤i≤bpc

sup
D⊂[0,T ]

∑
li∈D
||xili,li−1

||
i
p

(Rd)⊗i


p
i

,

where bpc denotes the integer floor, D a partition of [0, T ], and || · ||(Rd)⊗i the norm on the tensor
product space induced by the Euclidean norm on Rd. This is an example of a control, a super-
additive function that plays to role of a norm in the rough path context [25].

For a path Xt : [0, T ] → Rd of bounded variation, where the Lebesgue-Stieltjes integral is
defined, a canonical rough path representative exists that corresponds with the Chen signature,

S(Xt) =

(
1,

∫
0≤s0≤t

dXs0 ,

∫
0≤s0≤s1≤t

dXs0 ⊗ dXs1 , . . .

)
.

In [4] Chen proved – in the context of the algebraic topology – that the signature is a homomor-
phism between the space of paths and the tensor algebra. If we let γ1, γ2 be paths in Rd and let ∗
denote the concatenation operation, then

S(γ1 ∗ γ2) = S(γ1)⊗ S(γ2).

This identity guarantees that S(Xt) will be a multiplicative functional, i.e. a rough path in
Lyons’ definition [4]. The geometric p-rough paths, written GΩp(Rd) is the completion in the
p-variation norm of the space of signatures of paths of bounded variation.

Given a path Xt ⊂ Rd of bounded p-variation, we define the canonical lift to GΩp(Rd) by
approximating the path with dyadic interpolation. We define the n-th order dyadic interpolation of
Xt as the path coinciding with Xt at the dyadic points k/2n of the interval [0, T ], where k is an
integer, and piecewise linear in between. Explicitly,

X
(n)
t = X k

2n
+

(
t− k

2n

)
· 2−n ·

(
X k+1

2n
−X k

2n

)
,

for t ∈ [ k2n ,
k+1
2n ) ⊂ [0, T ].

If the limit exists (in p-variation norm) we define

X0,t = lim
n→∞

S(X
(n)
t ).

If such a path exists it is called the canonical lift of Xt because in general there are many distinct
rough paths with the same increment x1

s,t.
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To summarize, the canonical lift can be defined using the following commutative diagram

X
(n)
t Xt

S(X
(n)
t ) X0,t

,

the top horizontal arrow represents convergence in p-variation norm for a path in Rd, and the lower
horizontal arrow represents convergence in p-variation norm for a rough path in GΩp(Rd). The
left vertical arrow indicates the Chen Signature map, which is only defined for paths of bounded
variation.

When both the dyadic interpolations X(n)
t and the signatures S(X

(n)
t ) converge in p-variation

norm in their respective spaces, we can define a “lift map” which maps Xt to X0,t and makes the
diagram commute. This map is one to one since we can also map any rough path in GΩp(Rd)
to its increment x1

0,t. We often identify the path Xt with the rough path X0,t, and we will often
throughout this paper refer only to the path Xt while still applying the rough path technical ma-
chinery. In the case of fractional brownian motion – except for samples paths constituting a zero
(r, q)-capacity or slim set – fBm has a canonical lift to the rough path space according to Coutin
and Qian [5].

2.2. Rough Differential Equations. Lyons’ monograph [25] develops the solution to a rough
differential equation by building a theory of integration of one-forms defined on rough paths. It
is too technical to develop the full theory here. It is sufficient to say that rough path integration
with respect to Brownian motion is a generalization of Stratonovich’s definition of the integral, and
that it is possible to define integration pathwise and with respect to paths of bounded p-variation
for p > 2, where it is not possible to apply the Itô calculus. Lyons’ Universal Limit Theorem
proves that the Itô-Lyons solution map, which maps a driving path to the solution of an rde, Ψ :
GΩp(Rd)→ GΩp(Rd) is continuous in the p-variation norm.

Let Xt be a fBm, and let V i, 0 ≤ i ≤ d be be a vector field satisfying elliptic conditions,

vV (x)V ∗(x)v∗ ≥ λ|v|2 for v, x ∈ Rd,
where V (x) = (V i

j (x)), and λ > 0.
The solution to the following rde

Zt = x0 +

∫ t

0
V0(Zs)ds+

d∑
i=1

∫ t

0
Vi(Zs)dX

i
s,(2.1)

is then Ψ(Xt).
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We can apply the solution map Ψ to the commutative diagram from the earlier section, to obtain
a new diagram,

X
(n)
t Xt

Z
(n)
t Zt

Ψ Ψ
.

The Itô-Lyons map sends the dyadic interpolation of the fBm X
(n)
t to an approximation Z(n)

t of
the solution Zt. Both of these converge in p-variation, to the fBm Xt and solution Zt respectively,
because of the continuity of the solution map. This key fact will allow us to show that solutions to
an rde driven by fBm are quasi-continuous.

2.3. The Malliavin Calculus and Malliavin Derivative. For some fixedH ∈ (1
4 , 1), we consider

(Ω,F ,P) the canonical probability space associated with the fBm with Hurst parameter H . That
is, Ω = C0([0, T ]) is the Banach space of continuous functions vanishing at 0 equipped with the
supremum norm, F is the Borel sigma-algebra and P is the unique probability measure on Ω such
that the canonical process B = {Bt = (B1

t , . . . , B
d
t ), t ∈ [0, T ]} is a fractional Brownian motion

with Hurst parameter H .
To situate fBm in the context of the Malliavin calculus let us define R as follows,

R (t, s) := E
[
Bj
s B

j
t

]
=

1

2

(
s2H + t2H − |t− s|2H

)
, for s, t ∈ [0, 1] and j = 1, . . . , d.

Malliavin techniques are essential in the analysis of fBm, and we proceed here to introduce
some of them (see [30] for further details): let E be the space of Rd-valued step functions on [0, 1],
andH the closure of E for the scalar product:

〈(1[0,t1], · · · ,1[0,td]), (1[0,s1], · · · ,1[0,sd])〉H =

d∑
i=1

R(ti, si).

Some isometry arguments allow us to define the Wiener integral W (h) =
∫ 1

0 〈hs, dBs〉 for any
element h ∈ H, with the additional property E[W (h1)W (h2)] = 〈h1, h2〉H for any h1, h2 ∈ H.

AnF-measurable real valued random variable F is then said to be cylindrical if it can be written,
for a given n ≥ 1, as

F = f
(
W (h1), . . . ,W (hn)

)
= f

(∫ 1

0
〈h1
s, dBs〉, . . . ,

∫ 1

0
〈hns , dBs〉

)
,

where hi ∈ H and f : Rn → R is a C∞ bounded function with bounded derivatives. The set of
cylindrical random variables is denoted S .

The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F is the Rd valued
stochastic process (DtF )0≤t≤1 given by

DtF =

n∑
i=1

hi(t)
∂f

∂xi

(
W (h1), . . . ,W (hn)

)
.
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More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk

F = Dt1 . . .DtkF.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into Lp(Ω;H⊗k). We
denote by Dr,q the closure of the class of cylindrical random variables with respect to the norm

‖F‖r,q =

E (F q) +
r∑
j=1

E
(∥∥DjF

∥∥q
H⊗j

) 1
q

.

This norm is called the (r, q)-Sobolev norm.

2.4. Capacity and Quasi-Continuity. As mentioned in the introduction, there are various com-
parable definitions for capacity. For our purposes we will use the definition of capacity based on
the (r, q)-Sobolev norm. Let O be an open set with O ⊂ Ω, the capacity is defined as follows,

Capr,q (O) = inf {||F ||r,q : F ∈ Dr,q, F ≥ 1 on O,F ≥ 0,P-a.s. } .
For a general set A ⊂ Ω

Capr,q (A) = inf
{

Capr,q(O) : O open ,A ⊂ O
}
.

Note that capacity is strictly increasing in r, and r = 0 corresponds to the probability measure.
A random variable F , which is measurable with respect to the sigma-field F , is (r, q)-quasi-

continuous if for every ε > 0, there exists an open subset O ⊂ Ω such that Capr,q(O) < ε
and F |Oc is continuous. Note that a norm must be specificied on Ω, which in our context is the
supremum norm on Ω = C0([0, T ]). If F is (r, q)-quasi-continuous for all r, q ∈ N, F is simply
called quasi-continuous.

According to Theorem 2.3.3 in [27], every random variable F ∈ Dr,q has a quasi-continuous
modification F ∗ such that F = F ∗ almost surely (a.s.) and F ∗ is (r, q)-quasi-continuous. The
(r, q)-quasi-continuous version F ∗ is unique in the sense that F ∗ = F ∗

′
except on a set of zero

(r, q)-capacity if F ∗
′

= F almost surely and F ∗
′

is also (r, q)-quasi-continuous. Furthermore
Theorem 2.3.5 from [27] gives us the following convergence result for what he calls the (r, q)-
redefinition F ∗,

Theorem 2.1. Given ϕn, ϕ∞ ∈ Dr,q, suppose ||ϕn − ϕ∞||r,q → 0. Then it is possible to find
a subsequence nj and a sequence of decreasing open sets Ok such that ϕ∗nj converges uniformly
towards ϕ∗∞ on Ock, cp,r(Ok)→ 0, and Ock is compact.

Remark 2.2. Suppose ϕn = ϕ∗n and ϕn → ϕ∞ quasi-surely. Then we have that ϕnj → ϕ∞
pointwise on each Ock except possibly on a zero (r, q)-capacity subset. Also from the theorem
ϕnj → ϕ∗∞ pointwise on Ock. We must then have ϕ∞ = ϕ∗∞ on a full capacity subset of Ock. Then
taking the union of these sets we have that ϕ∞ = ϕ∗∞ except on a set of zero (r, q)-capacity. In
other words, ϕ∞ is its own (r, q)-redefinition and is thus (r, q)-quasi-continuous. This convergence
theorem is the key technical tool applied in the following lemma.

We are now in a position to demonstrate that the solution Zt is quasi-continuous.
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Lemma 2.3. The solution Zt to the stochastic rde (2.1) is quasi-continuous.

Proof. We can say that ω 7→ X
(n)
t is quasi-continuous because it is interpolated at a finite number

of points. The key idea is that the 1-variation only depends on the interpolation points, and it is
bounded in terms of these values where interpolation occurs. Let ω1, ω2 ∈ Ω. Then if P denotes a
partition of [0, T ],

||X(n)
t (ω1)−X(n)

t (ω2)||1−var = sup
P

∑
tk∈P

∣∣∣(X(n)
tk

(ω1)−X(n)
tk

(ω2)
)
−
(
X

(n)
tk−1

(ω1)−X(n)
tk−1

(ω2)
)∣∣∣

< M
∑

{k∈N:0< k
2n
≤T}

∣∣∣∣(X(n)
k
2n

(ω1)−X(n)
k
2n

(ω2)

)
−
(
X

(n)
k−1
2n

(ω1)−X(n)
k−1
2n

(ω2)

)∣∣∣∣
< M ′ max

{k∈N:0< k
2n
≤T}

∣∣∣∣X(n)
k
2n

(ω1)−X(n)
k
2n

(ω2)

∣∣∣∣ ≤M ′′ sup |ω1(t)− ω2(t)|,

for some constants M,M ′,M ′′ which only depends on n. Z(n)
t is also quasi-continuous because

the 1-variation of Z(n)
t is controlled by the 1-variation of X(n)

t due to the continuity of the solution
map.

Also, according to Inahama in [14], Z(n)
t converges to Zt in (r, q)-Sobolev norm for all r, q

given the smoothness and boundedness conditions on the vector field. Finally we can apply the
theorem and remark 2.2 above with ϕn = Z

(n)
t and ϕ∞ = Zt to get the result.

�

2.5. The Chebyshev Inequality for capacity. The reason we need to demonstrate quasi-continuity
for the rde solution Zt is to apply the Chebyshev inequality for capacity,

Capr,q(|f | > R) ≤ Mr,q||f ||r,q
R

,R < 0,

One can find the proof of the inequality in Theorem 2.2 in II.iv.2.2 in [27]. The inequality is very
similar to the classical Chebyshev inequality, and in the case of r = 0 it reduces to the Chebyshev
inequality. This inequality holds for any (r, q)-quasi-continuous function f ∈ Dpr , and Mr,q only
depends on r and q.

2.6. Sobolev type bounds on fBm driven SDE. By a similar argument to [1, Lemma 4.1], we
have the following bound on the Sobolev norm of the Malliavin derivative of the solution Zt to
(2.1),

‖D(Zt − Zs)‖Nr,q ≤ C(t− s)NH .
Note that this implies that

|||Zt − Zs|2N ||r,q ≤ C|t− s|2NH .(2.2)

For an elliptic rde we know the density function exists, and we have the following bound on the
density function from [20, Theorem 3.3]. Given ε > 0, we have for ε < s < t ≤ T a constant C
which depends only on ε and T such that

ps,t(y) := P(Zt − Zs ∈ dy) ≤ C(t− s)−dHexp

(
−|y|

(2H+1)∧2

C(t− s)2H

)
≤ C(t− s)−dH .(2.3)



8 WILLIAM ROBERSON-VICKERY AND CHENG OUYANG

2.7. Dyadic Intervals. The following theorem allows us to control the p-variation using dyadic
partitions only, which is key to the proof of the main theorem here as well as in Kakutani’s original
paper [15].

Theorem 2.4. Let X = (X1, . . . , Xbpc) be a p-rough path.
(1) Suppose that X = (1, X1, X2, · · · ) is the signature path of X. If there exists a control

function ω(s, t) such that

|Xi
s,t| ≤

ω(s, t)
i
p

β
(
i
p

)
!

(2.4)

for 1 ≤ i ≤ bpc and 0 ≤ s ≤ t ≤ 1, where β is a constant such that

β ≥ p2

(
1 +

∞∑
l=1

(
2

l

)(bpc+1)/p
)

(2.5)

then the inequality 2.4 holds for all i ≥ bpc as well.
(2) Given a constant γ < p− 1, for 0 ≤ s ≤ t ≤ 1 and 1 ≤ i ≤ bpc define

ρi(X, s, t) =
∞∑
m=1

mγ
2m∑
k=1

∣∣∣Xi
tk−1
m ,tkm

∣∣∣ pi(2.6)

where (tkm)0≤k≤2m is the dyadic partition of [s, t]. Then there exists a constant C =
C(p, γ), such that

sup
P([s,t])

∑
l

∣∣∣Xi
tl−1,tl

∣∣∣ pi ≤ C(p, γ)
i∑

j=1

ρj(X, s, t)(2.7)

for all 1 ≤ i ≤ bpc and 0 ≤ s ≤ t ≤ 1, where the supremum is taken over all finite
partitions of [s, t].

Refer to [24] for the proof.

3. MAIN THEOREM

This brings us to the statement of our main theorem which is consistent with previous results
such as [15] in the case of r = 0 and H = 1

2 or [3] for H = 1
2 .

Theorem 3.1. Let H > 1
4 , and let Zt denote the solution to a d-dimensional stochastic differential

equation of the form (2.1) driven by a fractional Brownian motion, then

Cap(r,q) ({Zt = Zs for 0 ≤ s < t ≤ 1}) = 0

if
2

H
+ rq < d.

We divide the proof of the main theorem into three sections. First we bound the capacity of the
event that the increment maximum exceeds η (bounding increment above).
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3.1. Bounding capacity of magnitude of increment.

Proposition 3.2. Let η > 0, then for N > r satisfying N
H is an even integer,

Cap(r,q)

(
max
t0≤t≤t1

|Zt − Zt0 | > η

)
≤ Cη−

N
H |t1 − t0|N ,

where C depends on N, q, r, d.

Proof. Let Xt be the solution to equation 2.1.
Choose λ > 0 so that

η > λ1/p,

and let
ω(s, t) = sup

P⊂[s,t]

∑
tl,tl−1∈P

|Ztl − Ztl−1
|p

for some p > 1
H .

Note that
max
t0≤t≤t1

|Zt − Zt0 | ≤ ω(t0, t1)1/p and ω(t0, t1) ≤ C(p, γ)ρ1

where ρ1, C(p, γ) is defined as in theorem 2.4.
Then for C = C(p, γ)−1, we have{

max
t0≤t≤t1

|Zt − Zt0 | > η

}
⊆
{

max
t0≤t≤t1

|Zt − Zt0 | > λ1/p

}
⊆ {ω(t0, t1) > λ}
⊆ {ρ1 > Cλ} .

Given θ > 0 let Cθ > 0 satisfy

Cθ

∞∑
m=1

mγ2−mθ ≤ C.

Then we have
ρ1 > Cλ

implies

ρ1 =
∞∑
m=1

mγ
2m∑
k=1

|Ztkm − Ztk−1
m
|p > Cλ ≥

∞∑
m=1

Cθλm
γ2−mθ,

where the tkm are the points of the dyadic partition defined in theorem 2.4.
If the inequality above holds, then for some m we must have

2m∑
k=1

|Ztkm − Ztk−1
m
|p > Cθλ2−mθ =

2m∑
k=1

Cθλ2−m(θ+1).

From this inequality it follows that for some term indexed by k,

|Ztkm − Ztk−1
m
|p > Cθλ2−m(θ+1).
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Accordingly

{ρ1 > Cλ} ⊆
∞⋃
m=1

2m⋃
k=1

{
|Ztkm − Ztk−1

m
|p > Cθλ2−m(θ+1)

}
.

It follows from the sub-additivity of capacity that

Capr,q ({ρ1 > Cλ}) ≤
∞∑
m=1

2m∑
k=1

Capr,q
({
|Ztkm − Ztk−1

m
|p > Cθλ2−m(θ+1)

})
.

As explained in the introduction, Zt is quasi-continuous. To apply the Chebyshev inequality
we need to replace |Zt − Zs|p with |Zt − Zs|

N
H , where N

H is an even integer greater than p, since
composition with a smooth function preserves quasi-continuity. We can then apply the Chebyshev
inequality for capacity and inequality (2.2) to yield

Capr,q
({
|Ztkm − Ztk−1

m
|N/H > (Cθλ)N/Hp2−mN(θ+1)/Hp

})
≤ M

(Cθλ)N/Hp
|||Ztkm − Ztk−1

m
|N/H ||r,q2mN(θ+1)/Hp

≤ M̃

(Cθλ)N/Hp
(tkm − tk−1

m )N2mN(θ+1)/Hp

=
M̃ |t1 − t0|N

(Cθλ)N/Hp
2
mN

(
(θ+1)
Hp
−1

)

From this it follows that

Cap(r,q)

(
max
t0≤t≤t1

|Zt − Zt0 | > η

)
≤ M̃ |t1 − t0|N

(Cθλ)N/Hp

∞∑
m=1

2
m
(
N
(

(θ+1)
Hp
−1

)
+1

)

So we need to have

N

(
(θ + 1)

Hp
− 1

)
+ 1 < 0,

for the sum to converge to a finite number. This is possible since p > 1
H . Finally we obtain

Cap(r,q)

(
max
t0≤t≤t1

|Zt − Zt0 | > η

)
≤ CN,q,d

|t1 − t0|N

λN/Hp
≤ CN,q,d

|t1 − t0|N

ηN/H

�

3.2. Bounding capacity of magnitude of total displacement. We now need bounds on the ca-
pacity of the event that the increment is smaller than η.

Proposition 3.3. Let τ > 0, and let H be the parameter of a Brownian motin driving the solution
to rde (2.1)

Cap(r,q) (|Zt1 − Zt0 | ≤ η) ≤ C

|t1 − t0|
dH
τq

η
d
τq
−r
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Proof. Define a function f ∈ C∞(Rd) such that
0 ≤ f(x) ≤ 1 for all x ∈ Rd
f(x) = 1 for |x| ≤ η
f(x) = 0 for |x| ≥ 2η

|∇kf(x)| ≤ Cn
ηk

for all x ∈ Rd

Define F (ω, t) = f(Zt − Zt0). Using the chain rule and (2.2) we can conclude that for all
q′ > 1,

||F ||r,q′ ≤
C(r, q′, n, d)

ηr
.

We can apply the Chebyshev inequality for capacity because F is smooth and Zt is quasi-
continuous, so their composition is quasi-continuous. Let τ > 1, then

Capr,q(|Zt1 − Zt0 | ≤ η) ≤ Capr,q (|F | ≥ 1)
≤ Cr,q||F ||r,q
≤ Cr,q

∑r
i=0 E

(
|DiF |q1{|Zt1−Zt0 |≤2η}

)1/q

≤ ||F ||r,q1P (|Zt1 − Zt0 | ≤ 2η)1/τq

≤ C
ηrP (|Zt1 − Zt0 | ≤ 2η)1/τq

where q1 = τq
(τ−1) . We can use the bound (2.3) for density of an elliptic stochastic pde. This is

the reason why we require the vector field Vi in (2.1) to be elliptic. It is possible that we can loosen
this condition to hypoellipticity, where existence of a density is guaranteed and other bounds are
possible (ask cheng about this statement and if it needs citation).

Capr,q(|Zt1 − Zt0 | ≤ η) ≤ C
ηrP (|Zt1 − Zt0 | ≤ 2η)1/τq

≤ C
ηr

(∫
1{|x|≤2η}pt1−t0(x)dx

)1/τq
≤ C

ηr

(∫
1{|x|≤2η}c1t

−dHexp
(
− |y−x|

2H+1∧2

c2t2H

)
dx
)1/τq

≤ C′

ηr|t1−t0|dH/τq
(∫

1{|x|≤2η}dx
)1/τq

≤ C′

|t1−t0|dH/τq
η
d
τq
−r

If we can find any bound on the density in the neighborhood of 0 we should be prove a suitable
bound even for hypoelliptic equation. �

3.3. Combining bounds to prove main theorem. Finally we combine the two bounds for the
capacity of events related to the increment size. We subdivide the intervals where a self-intersection
might occur into dyadic sub-intervals in order to use these controls on capacity to estimate the
capacity of the self-intersection event.

Proof. Let [s0, s1] and [t0, t1] be dyadic intervals. Observe that for s ∈ [s0, s1] and t ∈ [t0, t1], if
Zs = Zt, then

|Zt0 − Zs0 | = |Zt0 − Zt + Zs − Zs0 | ≤ |Zt0 − Zt|+ |Zs − Zs0 |.



12 WILLIAM ROBERSON-VICKERY AND CHENG OUYANG

Accordingly,

{Zt = Zs :s ∈ [s0, s1] and t ∈ [t0, t1]}

⊆ {|Zt0 − Zs0 | ≤ 2η}
⋃
{|Zt − Zt0 | > η}

⋃
{|Zs − Zs0 | > η} .

(3.1)

Note that the q-th power of the capacity is subadditive due to the Meyer’s inequality and the
integral representation formula [2]. Without loss of generality assume |t1 − t0| = |s1 − s0| = ∆.
Then we obtain,

Capr,q({Zt = Zs : s ∈ [s0, s1] and t ∈ [t0, t1]})q

≤ Capr,q ({|Zt0 − Zs0 | ≤ 2η})q

+ Capr,q ({|Zt − Zt0 | > η})q

+ Capr,q ({|Zs − Zs0 | > η})q

≤ C

|t0 − s0|
dH
τ

η
d
τ
−rq + Cη−

Nq
H |t1 − t0|Nq + Cη−

Nq
H |s1 − s0|Nq

=
C

|t0 − s0|
dH
τ

η
d
τ
−rq + Cη−

Nq
H ∆Nq + Cη−

Nq
H ∆Nq.

(3.2)

Now consider covering the intervals [s0, s1] and [t0, t1] with smaller dyadic intervals of length
∆2−l. Any two intervals of the form [s0+k2−l, s0+(k+1)2−l] and [t0+(j+1)2−l, t1+(j+1)2−l]
are separated by at least a distance of |t0−s1|. There are also 22l possible pairs of the new intervals
that could contain the self-intersection. This yields

Capr,q({Zt = Zs : s ∈ [s0, s1] and s ∈ [t0, t1]})q

≤ 22l

(
C

|t0−s1|
dH
τ
η
d
τ
−rq + Cη−

Nq
H

(
∆2−l

)Nq
+ Cη−

Nq
H

(
∆2−l

)Nq)
≤ C22lη

d
τ
−rq + C ′η−

Nq
H 2−l(Nq−2)+1.

Now let η = 2−σl approach zero.

Capr,q({Zt = Zs : s ∈ [s0, s1] and s ∈ [t0, t1]})q

≤ C2−l(σ(
d
τ
−rq)−2) + C ′2−l(Nq(

σ
H

+1)−2)+1

In order for this to converge to zero we need

σ

(
d

τ
− rq

)
− 2 > 0,

and
σ

H
+ 1 > 0.

There is a sigma satisfying both these inequalities if
2

d
τ − rq

< σ < H.

This is possible if
2

H
+ rq < d,



13

since τ > 1.
�

4. CONCLUSION

The critical case remains an open question for both fractional Brownian motion and stochastic
differential equations driven by fractional Brownian motion. The difficulty to extend our result to
solutions to hypo-elliptic stochastic differential equations stems from the lack of estimate (2.3). A
key to obtain such an estimate is a good control of the Malliavin matrix of Zt − Zs, which is not
an easy task for hypo-elliptic equations.
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[6] Dvoretzky, A., Erdős, P., Kakutani, S., Double points of paths of Brownian motion in n-space, Acta Sci. Math.
Szeged 12: 75–81, 1950.

[7] A. Dvoretzky, P. Erdös, S. Kakutani, Multiple points of paths of Brownian motion in the plane. Bull. Res. Council
Israel 3, 364–371, 1954.

[8] A. Dvoretzky, P. Erdös, S. Kakutani, S. J. Taylor, Triple points of Brow- nian paths in 3-space. Proc. Cambridge
Philos. Soc. 53, 856–862 (1957).

[9] P. K. Friz and N. B. Victoir, Multidimensional stochastic processes as rough paths, Cambridge University Press,
Cambridge, 2010.

[10] M. Fukushima, Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan 36
(1): 161–176, 1984.

[11] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, De Gruyter, Berlin/New
York 2010.

[12] M. Hinz, S. Kang, Capacities, Removable Sets and Lp-Uniqueness on Wiener Spaces, Potential Analysis 54:503-
533, 2021.

[13] Y. Inahama, Quasi-Sure Existence of Brownian Rough Paths and a Construction of Brownian Pants, Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 9 (4): 513–528, 2006.

[14] Y. Inahama, Malliavin Differentiability of Solutions of Rough Differential Equations. Preprint. arXiv:1312.7621.
[15] S. Kakutani, On Brownian Motions in n-Space, Proceedings of the Imperial Academy 20 (9): 648–652, 1944.
[16] D. Khoshnevisan, Intersections of Brownian Motion. Expo. Math. 21: 97-114, 2003.
[17] A.N. Kolmogorov, Wienersche spiralen und einige andere interessante Kurven in Hilbertscen Raum, C. R. (Dokl.)

Acad. Sci. URSS (NS) 26, 115–118, 1940.
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